图论与网络流理论课后答案_图论与网络算法

最新专区 2024-07-24 09:49:54

北京师范大学数学考研:考研初试和复试该如何准备?

数学自身特色鲜明,自成体系,作为一级学科的数学是一个范围广阔、分支众多、应用广泛的科学体系,已构成包括基础数学、计算数学、概率论与数用欧拉的发现去分析七桥问题,这张图上的A、B、C、D全是奇顶点,因此,不能一笔画,所以,游人一次走遍第三题:七桥是不可能的。理统计、应用数学、运筹学与控制论、数学教育等6个研究方向。考研报考北京师范大学数学的同学们初试和复试具体的备考方法是什么?下面跟随猎考考研一起来详细看一下吧~》》各院校数学考研初试和复试备考方法详细汇总

图论与网络流理论课后答案_图论与网络算法图论与网络流理论课后答案_图论与网络算法


求《组合数学引论第二版(许胤龙 孙淑玲) 完整课后答案

题:

Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。答案:

第二题:

答案:

答案:

第四参考资料:数学书题:

答案:

第五题:

答案:

扩展资料这部分知识主要考察的是离散数学知识点:

广义的组合数学就是离散数学,狭义的组合数学是离散数学除图论、代数结构、数理逻辑等的部分。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究离散对象的科学。

随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。

狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。 组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化(组合)等。

计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在做数值计算。确切地说,组合数学是计算机出现以后迅速发展起来的一门数学分支,主要研究离散对象的存在、计数以及构造等方面问题。

由于计算机软件的促进和需求,组合数学已成为一门既广博又深奥的学科,其发展奠定了本世纪的计算机革命的基础,并且改变了传统数学中分析和代数占统治地位的局面。正是因为有了组合算法才使人感到,计算机好像是有思维的。

网络流理论的理论创建

这个问题传到住在彼得堡的欧拉耳中,当然,他不会去哥尼斯堡教学,而是把问题画成一张图:小岛、河岸画成点,桥画成连结点的线,他考虑:如果能从一个点开始用笔沿线画(就像人过桥一样)笔不准离开纸(人连续走路),同一条线不准画两遍(每个桥只经过一次),所有线都画完,能否回到原来的出发点?这就是“一笔画”问题。告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。 七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为 加里宁格勒地理

流理论是由福特和富尔克森于1956年创立的,他们指出流的流值等于小割(截集)的容量这个重要的事实,并根据这一原理设计了用标号法求流的方法,后来又有人加以改进,使得求解流的方法更加丰富和完善。流问题的研究密切了图论和运筹学,特别是与线性规划的联系,开辟了图论应用的新途径。

在网络理论基础上发展的控制方法是?

在图论基础上研究网络一般规律和网络流问题各种优化理论和方法的学科,是运筹学的一个分支。网络是用节点和边联结构成的图,表示研究诸对象及其相互关系,如铁路网、电力网和通信网等。

中文名

外文名

net theory

提出者

杨路老师,自动化工程学院副,给我们的课程是《机器视觉与学习》,这是一门在当下极热门的课程,杨老师从日本名古屋大学深造归来,留在母校成电任教,并拥有自己的创业团队,在机器学习、人工智能领域取得了的成绩,站在AI科学技术的高层。杨老师在课堂上也是双语教学,讲课极具感染力,大家不仅佩服他的授课水平,更被他的创业信心与实力所感染,当下就需要像杨老师这样富有创业的年轻人。

德国

关键字

网络流、优化理论

快速

导航

发展概况

流量问题

短路此时网络变成: , 。分支 对应的流量、流阻和阻力分别用 、 和 表示,并有:径问题

短树问题

小费用流

在图论基础上研究网络一般规律和网络流问题各种优化理论和方法的学科,是运筹学的一个分支。网络是用节点和边联结构成的图,表示研究诸对象及其相互关系,如铁路网、电力网和通信网等。网络中的节点代表任何一种流动的起点、运转点和终点(如车站、港口、城镇、计算机终端和工程项目的等)。网络中的边代表任何物流、能流或信息流通过的通道(如输电线、通信线、铁路线和各之间的次序等)。在网络中每条边上赋予某个正数,称为该边的权,它可以表示路程、流量、时间和费用等。建立网络的目的都在于把某种规定的物质、能量或信息从某个供应点地输送到另一个需求点去。例如,在管道网络中要以短的距离、的流量和小的费用把水、石油或天然气从供应点送到用户那里。

发展概况

网络理论起源于图论[1] 。1845年G.R.基尔霍夫应用图论和[2] 矩阵理论证明了电网络中两个重要定律,即基尔霍夫电流定律和电压定律,不仅为图论的发展作出了贡献,也奠定了网络理论的基础。20世纪50年代以来,随着网络理论的广泛应用,许多学者提出优化计算的方法。1956年L.R.小福特和D.R.富尔克森提出寻找流量的标号算法。1959年E.W.戴克斯特拉提出寻找短路径的标号算法。1961年,富尔克森提出求解更一般的小费用流的状态算法,这是解短路径、流量与小费用流的统一方法,是网络理论中基本的结果之一。此后又相继提出了各种类型的网络流问题,诸如带下界容量的网络流、动态流、带增益的流和多种物资流等问题,并得到一系列结果。

流量问题

当物质流或信息流通过给定的网络时(图1),在流过每条边的流量xij不超过该边允许通过的流量cij的条件下,求出从发点s向收点t输出的流量f,即在满足的条件下,使f。流量问题是一个特殊的线性规划问题,有许多求解方法。一种有效的计算方法是福特-富尔克森法,它是根据流量-小割集原理,通过标号算法,求出在上述约束条件下从发点s到收点t的流量f 的数值。其计算步骤如下:①绘制一个能满足上述约束条件的网络可行流(图2)。边上的数字为允许流量cij,括号内的数字为给定的可行流。②找出一条增广链。增广链是指从发点s到收点t的链中,满足正向边上xij0的链。图2中用粗线表示的{vs,v2,v3,v4,v6,vt} 是一条增广链。其中【v2,v3】为反向边,其余均为正向边。③调整可行流,即在增广链的各边上,属正向边加上一个修正量ε,属反向边减去一个修正量ε,即xij+εj,xji-εj。

短路径问题

一般提法是:寻找网络中两点间的短路径,即寻找连接这两点的边的总权数(可以是距离、时间、费用等)为小的通路。图4为短路径问题的一个例子。短路径问题有两种算法。戴克斯特拉法1959年提出。其计算方法是:从始点vs,标以零值,并记在vs旁的方括号内。然后依节点序号顺序找出到达各点的短距离,并说明来自何方,例如在节点v3处标上【v2,4】,即表示来自节点v2,距离累计为4。戴克斯特拉法可以通过编制计算程序,在计算机上运算。

图论中的短路径问题与化理论中的动态规划有何联系

三 如果每座桥只能走一次,那么除了起点以外,当一个人由一座桥走到一块陆地时,这个人必须从另外一座桥离开这块陆地。那么对每块陆地来说,有一座进入的桥就应该对应一座离开的桥。那么在每一块陆地连接的桥数应该为偶数。但七桥连出来是奇数,所以一个人不能一次走完七座桥。欧拉终于证明了他的结论。 回答者: 865706574 | 二级 | 2011-5-16 19:31总 结

短路是一类问题,动态规划是一类方法,虽然都是求解,没啥必然联系,要看你说哪方面的联系。假定你说在算法上的联系,那还要具体结合是哪种算法,短路用迪杰斯塔拉算法就和动态规划没啥联系,不过像迪杰斯塔拉算法也能找到很多思想不多的算法。而如果短路用弗洛里德算法,就是O(n3)的算法,那么它其实就是一种动态规划。

七桥问题的答案

欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。

七桥问题Seven Bridges Problem

七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为 加里宁格勒地理欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。

古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。

有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。

当Euler在1736年访问Konigerg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigerg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。

七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.

接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!

1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。

七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。

七桥连线

这个问题看似简单,然而许多人作过尝试始终没有能找到答案。因此,一群大学生就写信给当时年仅20岁的大数学家欧拉,请他分析一下。欧拉从千百人次的失败中,以深邃的洞察力猜想,也许根本不可能不重复地一次走遍这七座桥。为了证明这种猜想是正确的,欧拉用简单的几何图形来表示陆地和桥。他是这样解决问题的:既然陆地是桥梁的连接地点,不妨把图中被河隔开的陆地看成A、B、C、D 4个点,7座桥表示成7条连接这4个点的线,如图“七桥连线”所示。

七桥连线简化图

再把它简化成图形,就成了右图“七桥连线简化图”。

在说欧拉的推论前,我们先说说偶点和奇点的问题。

奇偶数点图

什么是偶点呢?一个点如果有偶数条边,它就是偶点。如下面“奇偶数点图”的A、B、E、F点。反之,如果一个点有奇条边数,它就是奇点。如图中的C、D这两点。

偶点和奇点与能不能一次通过这座桥有关系吗?别急,我们慢慢来说。

欧拉认为,如果一个图能一笔画成,那么一定有一个起点开始画,也有一个终点。图上其它的点是“过路点”——画的时候要经过它。

“过路点”有什么特点呢?它应该是“有进有出”的点,有一条边进这点,那么就要有一条边出这点,不可能是有进无出或有出无进。如果只进无出,它就是终点;如果有出无进,它就是起点。因此,在“过路点”进出的边总数应该是偶数,即“过路点”是偶点。

如果起点和终点是同一点,那么它也是属于“有进有出”的点,因此必须是偶点,这样图上全体点都是偶点。

如果起点和终点不是同一点,那么它们必须是奇点,因此这个图多只能有二个奇点。

把上面所说的归纳起来,说简单点就是:

能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。

现在对照七桥问题的图,我们回过头来看看图3,A、B、C、D四点都连着三条边,是奇数边,并且共有四个,所以这个图肯定不能一笔画成。

欧拉对“七桥问题”的研究是图论研究的开始,同时也为拓扑学的研究提供了一个初等的例子。

事实上,民间很早就流传着这种一笔画的游戏,从长期实践的经验,人们知道如果图的点全部是偶点,可以任意选择一个点做起点,一笔画成。如果是有二个奇点的图形,那么就选一个奇点做起点以顺利的一笔画完。要是不信的话,你可以试试上图“奇偶数点图”,选择C、D两个奇点来画,肯定能一笔画成。只是很可惜,长期以来,人们只把它作为一类有趣的游戏,没有对它引起重视,也没有数学家对它进行经验总结和研究,这不能不说是一种遗憾。

七桥问题Seven Bridges Problem

古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。

有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。

当Euler在1736年访问Konigerg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigerg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。

七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.

接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!

1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。

七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。 回答者: 1511832927 | 一级 | 2011-5-13 09:24

不可能,因为如果要能一笔走成,就要奇数点为0或1或2

奇数点:线段在一个点集齐,有单数条线汇合在一个点上,就是奇数点。 回答者: 热心网友 | 2011-5-13 12:58

七桥问题其实是没有解的,不管怎么走,总有一条桥会漏掉。 回答者: love516647133 | 一级 | 2011-5-13 13:00

18世纪古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。 有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2. 当Euler在1736年访问Konigerg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigerg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示 数学家欧拉

。 后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成. 欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!

编辑本段终成果

问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。而利用普通数学知识,每座桥均走一次,那这七座桥所有的走法一共有5040种,而这么多情况,要一一试验,这将会是很大的工作量。但怎么才能找到成功走过每座桥而不重复的路线呢?因而形成了的“哥尼斯堡七桥问题”。 1735年,有几名大学生写信给当时正在的彼得斯堡科学院任职的天才数学家欧拉,请他帮忙解决这一问题。欧拉在亲自观察了哥尼斯堡七桥后,认真思考走法,但始终没能成功,于是他怀疑七桥问题是不是原本就无解呢? 1736年,在经过一年的研究之后,29岁的欧拉提交了《哥尼斯堡七桥》的论文,解决了这一问题,同时开创了数学新一分支---图论。 在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。并由此得到了如图一样的几何图形。 若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。这样的“七桥问题”便转化为是否能够用一笔不重复的画出过此七条线的问题了。若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由A或C为起点得到的效果是一样的,若假设以A为起点和终点,则必有一离开线和对应的进入线,若我们定义进入A的线的条数为入度,离开线的条数为出度,与A有关的线的条数为A的度,则A的出度和入度是相等的,即A的度应该为偶数。即要使得从A出发有解则A的度数应该为偶数,而实际上A的度数是3为奇数,于是可知从A出发是无解的。同时若从B或D出发,由于B、D的度数分别是5、3,都是奇数,即以之为起点都是无解的。 有上述理由可知,对于所抽象出的数学问题是无解的,即“七桥问题”也是无解的。 由此我们得到:欧拉回路关系 由此我们可知要使得一个图形可以一笔画,必须满足如下两个条件: 1. 图形必须是连通的。 2. 途中的“奇点”个数是0或2. 我们也可以依此来检验图形是不是可一笔画出。回头也可以由此来判断“七桥问题”,4个点全是奇点,可知图不能“一笔画出”,也就是不存在不重复地通过所有七桥。 欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报 七桥问题

欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。 此题被人教版小学数学第十二册书收录.在95页。 此题也被人教版初中册收录.在121页. 一笔画:■⒈凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,一定能以这个点为终点画完此图。 ■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。画时必须把一个奇点为起点,另一个奇点终点。 ■⒊其他情况的图都不能一笔画出。(奇点数除以二便可算出此图需几笔画成。) 回答者: 热心网友 | 2011-5-13 18:54

编辑本段

问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。而利用普通数学知识,每座桥均走一次,那这七座桥所有的走法一共有5040种,而这么多情况,要一一试验,这将会是很大的工作量。但怎么才能找到成功走过每座桥而不重复的路线呢?因而形成了的“哥尼斯堡七桥问题”。

1735年,有几名大学生写信给当时正在的彼得斯堡科学院任职的天才数学家欧拉,请他帮忙解决这一问题。欧拉在亲自观察了哥尼斯堡七桥后,认真思考走法,但始终没能成功,于是他怀疑七桥问题是不是原本就无解呢?

1736年,在经过一年的研究之后,29岁的欧拉提交了《哥尼斯堡七桥》的论文,解决了这一问题,同时开创了数学新一分支---图论。

在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。并由此得到了如图一样的几何图形。 若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。这样的“七桥问题”便转化为是否能够用一笔不重复的画出过此七条线的问题了。若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由A或C为起点得到的效果是一样的,若假设以A为起点和终点,则必有一离开线和对应的进入线,若我们定义进入A的线的条数为入度,离开线的条数为出度,与A有关的线的条数为A的度,则A的出度和入度是相等的,即A的度应该为偶数。即要使得从A出发有解则A的度数应该为偶数,而实际上A的度数是3为奇数,于是可知从A出发是无解的。同时若从B或D出发,由于B、D的度数分别是5、3,都是奇数,即以之为起点都是无解的。

有上述理由可知,对于所抽象出的数学问题是无解的,即“七桥问题”也是无解的。

由此我们得到:欧拉回路关系

由此我们可知要使得一个图形可以一笔画,必须满足如下两个条件:

1. 图形必须是连通的。

2. 途中的“奇点”个数是0或2.

我们也可以依此来检验图形是不是可一笔画出。回头也可以由此来判断“七桥问题”,4个点全是奇点,可知图不能“一笔画出”,也就是不存在不重复地通过所有七桥。

1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报 七桥问题告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。

此题被人教版小学数学第十二册书收录.在95页。

此题也被人教版初中册收录.在121页.

一笔画:■⒈凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,一定能以这个点为终点画完此图。

■⒊其他情况的图都不能一笔画出。(奇点数除以二便可算出此图需几笔画成。) 回答者: chen00000zx | 二级 | 2011-5-15 10:38

不能,因为有4个奇点 回答者: 方发电站 | 二级 | 2011-5-15 16:41

七桥问题是不可能解决的。 回答者: 热心网友 | 2011-5-18 17:33

七桥问题

1736年,为欧拉在彼得堡担任时,他解决了一个有趣的“七桥问题”,这个趣题一直流传到现在,并相信它是拓朴学产生的萌芽。

有一天,人们教学的时候,有人提出一个问题:“如果每座桥走一次且只走一次,又回到原来地点,应该怎么走?”当时没有一个人能找到答案。

欧拉意识到他所研究的几何问题是一种新的几何学,所研究的图形与形状和大小无关,重要的是位置怎样用弧连结,这张图就是一个网络。

欧拉为什么能抽象出这张图呢?是他利用了几何的抽象化和理想化来观察生活,初一几何开始讲点、线、面,这些几何概念是从现实中抽象化和理想化而来,笔尖点在纸上是一个点。

在地图上一个城市是一个点,在欧拉眼中,岛和陆地抽象成点,马路可看成线,欧拉眼中,桥抽象成线,直线是笔直的生活中没有完全的笔直线,这是理想化了,正因为数学的这种抽象,才使数学具有“应用的广泛性”这一特点。

欧拉怎样解决的这个问题呢?若一个顶点发出的弧的条数为奇数时,称为奇顶点;发生的弧的条数为偶数时,称为偶顶点,一笔画一定有一个起点、一个终点和一定数目的通过点,分两种情况考虑:

种:起点和终点不是同一点,把集中在起点的所有弧画完为止,有进有出,一笔必须画出去,所以起点必须是奇顶点;另一方面把集中在终点的所有弧线画完为止,一笔必须画进来,因此,终点也必须是奇顶点;其它经过的点,有几条弧画进来,必有同样多的弧画出去,必是偶顶点。

第二种:起点和终点为同一点,又画出去,又画进来,必为偶顶点,其它顶点有进有出也都是偶顶点,因此,欧位得出以下结论:

1.全是偶顶点的网络可以一笔画。

3.如果一个网络有两个奇顶点,它就可以一笔画,但不能回到原来的出发点,这时,必须从一个奇顶点出发,然后回到另一个奇顶点。

看完欧拉的解法,启发我们:生活中许多问题用数学方法解决,但首先要抽象化和理想化,其中点和线的抽象又是基本的。

七桥问题Seven Bridges Problem

古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。

有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。

当Euler在1736年访问Konigerg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigerg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。

七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.

接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!

1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。

七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。

18世纪古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。 有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2. 当Euler在1736年访问Konigerg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigerg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示 数学家欧拉

。 后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成. 欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!

编辑本段终成果

问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。而利用普通数学知识,每座桥均走一次,那这七座桥所有的走法一共有5040种,而这么多情况,要一一试验,这将会是很大的工作量。但怎么才能找到成功走过每座桥而不重复的路线呢?因而形成了的“哥尼斯堡七桥问题”。 1735年,有几名大学生写信给当时正在的彼得斯堡科学院任职的天才数学家欧拉,请他帮忙解决这一问题。欧拉在亲自观察了哥尼斯堡七桥后,认真思考走法,但始终没能成功,于是他怀疑七桥问题是不是原本就无解呢? 1736年,在经过一年的研究之后,29岁的欧拉提交了《哥尼斯堡七桥》的论文,解决了这一问题,同时开创了数学新一分支---图论。 在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。并由此得到了如图一样的几何图形。 若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。这样的“七桥问题”便转化为是否能够用一笔不重复的画出过此七条线的问题了。若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由A或C为起点得到的效果是一样的,若假设以A为起点和终点,则必有一离开线和对应的进入线,若我们定义进入A的线的条数为入度,离开线的条数为出度,与A有关的线的条数为A的度,则A的出度和入度是相等的,即A的度应该为偶数。即要使得从A出发有解则A的度数应该为偶数,而实际上A的度数是3为奇数,于是可知从A出发是无解的。同时若从B或D出发,由于B、D的度数分别是5、3,都是奇数,即以之为起点都是无解的。 有上述理由可知,对于所抽象出的数学问题是无解的,即“七桥问题”也是无解的。 由此我们得到:欧拉回路关系 由此我们可知要使得一个图形可以一笔画,必须满足如下两个条件: 1. 图形必须是连通的。 2. 途中的“奇点”个数是0或2. 我们也可以依此来检验图形是不是可一笔画出。回头也可以由此来判断“七桥问题”,4个点全是奇点,可知图不能“一笔画出”,也就是不存在不重复地通过所有七桥。 欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报 七桥问题

欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。 此题被人教版小学数学第十二册书收录.在95页。 此题也被人教版初中册收录.在121页. 一笔画:■⒈凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,一定能以这个点为终点画完此图。 ■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。画时必须把一个奇点为起点,另一个奇点终点。 ■⒊其他情况的图都不能一笔画出。(奇点数除以二便可算出此图需几笔画成。)

七桥问题

1736年,为欧拉在彼得堡担任时,他解决了一个有趣的“七桥问题”,这个趣题一直流传到现在,并相信它是拓朴学产生的萌芽。

有一天,人们教学的时候,有人提出一个问题:“如果每座桥走一次且只走一次,又回到原来地点,应该怎么走?”当时没有一个人能找到答案。

欧拉意识到他所研究的几何问题是一种新的几何学,所研究的图形与形状和大小无关,重要的是位置怎样用弧连结,这张图就是一个网络。

欧拉为什么能抽象出这张图呢?是他利用了几何的抽象化和理想化来观察生活,初一几何开始讲点、线、面,这些几何概念是从现实中抽象化和理想化而来,笔尖点在纸上是一个点。

在地图上一个城市是一个点,在欧拉眼中,岛和陆地抽象成点,马路可看成线,欧拉眼中,桥抽象成线,直线是笔直的生活中没有完全的笔直线,这是理想化了,正因为数学的这种抽象,才使数学具有“应用的广泛性”这一特点。

欧拉怎样解决的这个问题呢?若一个顶点发出的弧的条数为奇数时,称为奇顶点;发生的弧的条数为偶数时,称为偶顶点,一笔画一定有一个起点、一个终点和一定数目的通过点,分两种情况考虑:

种:起点和终点不是同一点,把集中在起点的所有弧画完为止,有进有出,一笔必须画出去,所以起点必须是奇顶点;另一方面把集中在终点的所有弧线画完为止,一笔必须画进来,因此,终点也必须是奇顶点;其它经过的点,有几条弧画进来,必有同样多的弧画出去,必是偶顶点。

第二种:起点和终点为同一点,又画出去,又画进来,必为偶顶点,其它顶点有进有出也都是偶顶点,因此,欧位得出以下结论:

1.全是偶顶点的网络可以一笔画。

3.如果一个网络有两个奇顶点,它就可以一笔画,但不能回到原来的出发点,这时,必须从一个奇顶点出发,然后回到另一个奇顶点。

看完欧拉的解法,启发我们:生活中许多问题用数学方法解决,但首先要抽象化和理想化,其中点和线的抽象又是基本的。

所以是无解滴~~~~·

谢谢采纳~喵~

古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。

有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。

当Euler在1736年访问Konigerg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigerg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。

七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.

接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!

1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。

七桥问题

1736年,为欧拉在彼得堡担任时,他解决了一个有趣的“七桥问题”,这个趣题一直流传到现在,并相信它是拓朴学产生的萌芽。

有一天,人们教学的时候,有人提出一个问题:“如果每座桥走一次且只走一次,又回到原来地点,应该怎么走?”当时没有一个人能找到答案。

欧拉意识到他所研究的几何问题是一种新的几何学,所研究的图形与形状和大小无关,重要的是位置怎样用弧连结,这张图就是一个网络。

欧拉为什么能抽象出这张图呢?是他利用了几何的抽象化和理想化来观察生活,初一几何开始讲点、线、面,这些几何概念是从现实中抽象化和理想化而来,笔尖点在纸上是一个点。

在地图上一个城市是一个点,在欧拉眼中,岛和陆地抽象成点,马路可看成线,欧拉眼中,桥抽象成线,直线是笔直的生活中没有完全的笔直线,这是理想化了,正因为数学的这种抽象,才使数学具有“应用的广泛性”这一特点。

欧拉怎样解决的这个问题呢?若一个顶点发出的弧的条数为奇数时,称为奇顶点;发生的弧的条数为偶数时,称为偶顶点,一笔画一定有一个起点、一个终点和一定数目的通过点,分两种情况考虑:

种:起点和终点不是同一点,把集中在起点的所有弧画完为止,有进有出,一笔必须画出去,所以起点必须是奇顶点;另一方面把集中在终点的所有弧线画完为止,一笔必须画进来,因此,终点也必须是奇顶点;其它经过的点,有几条弧画进来,必有同样多的弧画出去,必是偶顶点。

第二种:起点和终点为同一点,又画出去,又画进来,必为偶顶点,其它顶点有进有出也都是偶顶点,因此,欧位得出以下结论:

1.全是偶顶点的网络可以一笔画。

3.如果一个网络有两个奇顶点,它就可以一笔画,但不能回到原来的出发点,这时,必须从一个奇顶点出发,然后回到另一个奇顶点。

看完欧拉的解法,启发我们:生活中许多问题用数学方法解决,但首先要抽象化和理想化,其中点和线的抽象又是基本的。

编辑本段

问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。而利用普通数学知识,每座桥均走一次,那这七座桥所有的走法一共有5040种,而这么多情况,要一一试验,这将会是很大的工作量。但怎么才能找到成功走过每座桥而不重复的路线呢?因而形成了的“哥尼斯堡七桥问题”。

1735年,有几名大学生写信给当时正在的彼得斯堡科学院任职的天才数学家欧拉,请他帮忙解决这一问题。欧拉在亲自观察了哥尼斯堡七桥后,认真思考走法,但始终没能成功,于是他怀疑七桥问题是不是原本就无解呢?

1736年,在经过一年的研究之后,29岁的欧拉提交了《哥尼斯堡七桥》的论文,解决了这一问题,同时开创了数学新一分支---图论。

在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。并由此得到了如图一样的几何图形。 若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。这样的“七桥问题”便转化为是否能够用一笔不重复的画出过此七条线的问题了。若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由A或C为起点得到的效果是一样的,若假设以A为起点和终点,则必有一离开线和对应的进入线,若我们定义进入A的线的条数为入度,离开线的条数为出度,与A有关的线的条数为A的度,则A的出度和入度是相等的,即A的度应该为偶数。即要使得从A出发有解则A的度数应该为偶数,而实际上A的度数是3为奇数,于是可知从A出发是无解的。同时若从B或D出发,由于B、D的度数分别是5、3,都是奇数,即以之为起点都是无解的。

有上述理由可知,对于所抽象出的数学问题是无解的,即“七桥问题”也是无解的。

由此我们得到:欧拉回路关系

由此我们可知要使得一个图形可以一笔画,必须满足如下两个条件:

1. 图形必须是连通的。

2. 途中的“奇点”个数是0或2.

我们也可以依此来检验图形是不是可一笔画出。回头也可以由此来判断“七桥问题”,4个点全是奇点,可知图不能“一笔画出”,也就是不存在不重复地通过所有七桥。

1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报 七桥问题告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。

此题被人教版小学数学第十二册书收录.在95页。

此题也被人教版初中册收录.在121页.

一笔画:■⒈凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,一定能以这个点为终点画完此图。

■⒊其他情况的图都不能一笔画出。(奇点数除以二便可算出此图需几笔画成。)

求通风网络解算方法 求高人详细解答

后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。

流体网络算法综述

网络理论

一 引 言

网络理论是拓扑数学分支之一—图论的重要内容。它是一门既古老而又年轻的科学,在图论基础上研究网络一般规律和网络流问题各种优化理论和方法的学科,是运筹网络理论学的一个分支。网络是用节点和边联结构成的图,表示研究诸对象及其相互关系,如铁路网、电力网和通信网等。网络中的节点代表任何一种流动的起点、运转点和终点(如车站、港口、城镇、计算机终端和工程项目的等)。在网络中每条边上赋予某个正数,称为该边的权,它可以表示路程、流量、时间和费用等。建立网络的目的都在于把某种规定的物质、能量或信息从某个供应点地输送到另一个需求点去。例如,在管道网络中要以短的距离、的流量和小的费用把水、石油或天然气从供应点送到用户那里。流体网络理论也在集中空调网络、供水、供气、供热网络矿井通风网络等等中有重要的理论应用,流体网络的算法研究也就有着不可缺少的重要作用。

二 算法综述

1 网络分流

1.1网络分流预处理

已知有向流体网络 ,设一虚拟的节点 ,我们把它定义为基点,连接基点和网络源汇点的虚拟分支为:

式中, 、 、 分别为包括虚拟节点和虚拟分支在内的网络分支对应的流量、流阻和阻力。

有关虚拟分支的主要参数规定如下:

1)流量等于与之相连的网络入边或出边的流量;

2)阻力等于基点 的压能与分支的另一节点 的压能之,基点的位置及其压能值均可任意设置;

3)流阻值的大小按照分支阻力定律计算,但是当虚拟分支阻力是0,而且流阻又位于分母时,流阻取无穷大。

2 流体网络的基本定律

2.1 质量守恒定律

(1)狭义的质量守恒定律(亦称节点质量守恒定律)

在单位时间内,任一节点流入和流出的流体质量的代数和为零。如果令流出为正、流入为负,则节点质量守恒定律可以写成:

式中, 和 分别为分支 和 的流体密度;

和 分别为分支 和 的流量;

和 分别是节点 的出边 和入边 。

当密度变化可以忽略不计时,上式可写为:

即流量平衡定律。该定律表明:对网路中的任一节点,流进的流量等于流出的流量。

(2)广义质量守恒定律

单位时间内,任一有向割集对应的分支流量的代数和等于0。割集流量平衡方程的矩阵表示是:

式中, 为有向割集矩阵及其元素值; 为割集数。

2.2 能量守恒定律

在任一闭合回路 上所发生的能量转换的代数和为零。即

式中, 为分支 的阻力,当分支与回路方向一致时, 取正号, 、当分支与回路方向相反时, 取负号,仍是 ;

为回路 上的流体机械动力,如风机、泵等等,当回路上的动力在回路内克服阻力做功时, 、反之,如果所属的动力在回路内起阻力作用,则有, ;

为回路 上的自然风压、火风压等等,同样,如果自然风压、火风压在回路中克服阻力做功, 、反之, 。我们把 和 统称为附加阻力,并记为 。

当回路上既无流体机械动力又无自然风压或火风压时,上式可写为: ,即阻力平衡定律。该定律表明:在任一回路上,不同方向的流体,它们的阻力必定相等。

2.3 阻力定律

流体在管路中流动时,其阻力(习惯上也叫压力损失、能量损失、压降等等)表达式为

式中, 为分支的阻力值;

为分支的流阻值;

为分支的流量值;

为流态因子,取决于流体的流动状态,层流时取1,完全紊流取2,过渡状态取1~2的中间值。

3 网络分流算法

3.1 网络分流算法综述

当流体网络中所有的流阻为已知,并已知网络的总流量、或已知回路的附加阻力,求所有分支流量的过程叫做网络分流,也称网络解算。

网络解算可分为:解析法、图解法、物理相似模拟法、数值方法。数值法属于近似法,是目前研究分流的主要手段。从计算数学的角度看,数值方法可分为三类:斜量法、迭代法和直接代入法。

3.2 Barczyk法

网络解算的基本方程组如下:

式中, 为分支流量;

为回路阻力平衡方程,简记成 ; 为基本关联矩阵元素;

为基本回路矩阵元素。

误判别式是:

式中, 是流量误限; 是阻力误限。

如果误满足要求,则解算结束;否则还要继续进行迭代。

归纳上述分析,Barczyk法的程序流程是:

① 已知: 、 、 、 , ;

② 拟定树支和余支,并把余支作为基准分支: 、 ;

③ 求回路矩阵: ;

④ 计算Jacobi矩阵及其逆阵: 、 ;

⑤ 计算阻力矩阵: ;

⑥ 求余支流量修正值矩阵: ;

⑦ 修正余支流量: ;

⑧ 修正树支流量: ;

⑨ 误验算: ,满足精度程序结束;否则, ,转到(4)继续迭代;

3.2 Cross法

Cross算法亦称Scott-Hinsley法。在Barczyk法中,如果回路选择的合理,可以使Jacobi矩阵除主对角线外其余元素为0,即:

上式表明, 个回路阻力平衡方程中每一个回路仅含有一个基准分支,显然当回路 时,上式会成立,并有:

将 代入上式,有:

如果令 ,则有回路流量校正值公式为:

式中, 为第 个基本回路、第 次迭代时的回路流量修正值, ; 为迭代次数, ; 为基本回路矩阵第 行,第 列元素值; 为回路第 列对应的分支流阻; 为回路第 列对应的分支在第 次迭代时的初始流量值; 为第 个基本回路的附加阻力。

回路分支流量校正式为:

上式的第二行是为了加快收敛速度所采取的算法,也就是用用已经修正过的流量值计算后面回路的流量修正值。

Cross法程序流程是:

(1) 已知: 、 、 、 , ;

① 拟定树及余树: 、 ;

② 拟定基本回路矩阵: ;

③ 计算回路流量修正值: ;

④ 修正回路流量: ;

⑤ 误验算,满足精度程序结束;否则, ,转到(4)继续迭代。

Cross法与Barczyk法的主要区别如表8-1所示。

表8-1 Barczyk法与Cros法的主要区别

方法与内容 Barczy法 Cross法

Jacobi矩阵非主对角线元素 不一定为0 一定为0

流量修正值 每一基准分支都有自己的流量修正值 同一回路内的分支具有相同的流量修正值

流量修正 基准分支流量修正值只对基准分支进行修正,非基准分支流量根据节点流量守恒定律确定 用同量修正值对回路内的所有分支进行修正

4分流算法中的一些具体问题

4.1 基准分支的拟定与迭代处理

以 为权对分支进行排序,将带有附加阻力的分支排在,然后找小树,将余支作为基准分支,从数学上已经证明这将加快迭代的收敛速度。如果迭代20次仍然不收敛,则以迭代后的分支流量值进行重新排序,再迭代,将加快收敛速度。

4.2 流体机械特性曲线的处理

一般用下面的二次曲线拟合流体机械特性曲线,而且认为流体机械的工况点在合理的工况区间内,如图8-2的实线部分。

式中, 为流体机械所在分支的流量; 、 、 为方程常数。

上式中,如果流体机械作用的方向与流体流动方向相同, ,流体机械克服流体流动阻力做功;反之, ,流体机械成为流体流动的阻力。

如果分支流量的初始值与其真值之间的偏较大,则有可能出现工况点落在特性曲线的另一侧,终导致假收敛。从软件的可视化角度、从面向现场工程技术人员的角度出发,网络分流时的初始流量拟定不应由人工完成,而计算机自动进行初始流量拟定时,如果采用二次曲线拟合,发生假收敛的机率会更多。

为了避免假收敛,同时,更为重要的是为了能够模拟流体机械在不稳定工作区(特性曲线的驼峰段)的工况、模拟流体机械作为流体流动的阻力时的状况,作者采用5次方程拟合流体机械特性曲线〔11〕,如图8-3所示,方程如下:

图8-1 图8-2

4.3 网络简化

目前流体网络的理论和应用在不断发展,出现了具有增益的流、多终端流、多商品流以及网络流的分解与合成等新课题。网络流的应用已遍及通讯、运输、电力、工程规划、任务分派、设备更新以及计算机辅助设计等众多领域。

流体网络理论在生产生活中具有不可缺少的重要地位,。

谁有面向计算机科学的数理逻辑系统建模与推理这本书的答案

终成果

然后像一些基础课程比如语言类C++,Ja,作系统,计算机组成原理,数据结构、算法,数据库等等两院都有,但是有些课被给予的关注程度不一样,比如计算机组成原理这门课我们还有实验部分,内容是设计CPU,我相信软院是不会有这个的。

计算机系还有硬件部分的课软院是不会有的,比如数字逻辑电路,和前面提到的组原实验

然后计算机系还会开很多针对计算机不同的分支的课,比如图论、人工智能、数据挖掘、计算方法(或叫数值分析)等等

计算机系对于数学比较看重,有离散数学(这个软院也有),数理逻辑,组合数学等。

我们学校是统一大专业方向招生——电气信息类——在大二细化为三个学科,分别是软件工程、网络工程、计算机科学与技术,我被分在了软件,但是也听过另外两个班的一些核心课程,简单谈一下自己的体会。

简单说一下两者课程的异,这一点前面的朋友也谈到了一些,我补充一下。

软件工程的核心课程主要是和软件开发有关,例如我们学校开设的软件需求分析、UML建模语言、软件体系结构、软件项目管理、软件测试等以及一些和行业领域相关的交叉课程,我们学校的金融专业很有优势,所以就开设了很多与金融相关的专业必修、选修课如:财务管理学、个人投资理财、网络金融、金融信息体统等。

相比之下计科专业的课程显得更加有理工课程的气息,其中软件没有的包括:汇编语言、数字电路与逻2.能一笔画的网络的奇顶点数必为0或2。辑设计、计算机体系结构、微机接口、ARM体系及编程技术、嵌入式项目分析设计技术等。

我的理解是软件方向的课程更侧重于应用即技术而计科的课程更侧重于科学即学术。虽然两者在实质上没有优劣之分,但是在教学中可以发现软件工程的课程偏”虚“,缺乏实践,毕竟高校不像企业那样有着深厚的技术储备,很多老师直接就是从其他高校毕业过来教书,没有实践的环节,这就有很大的问题了。

在我们学校,没有做过软件开发的老师授课效果,工程类的课程缺乏实践指导只停留在理论阶段是价值匮乏的——至少对于我而言——学生经常抱怨他们一学期下来不知道老师讲了什么,老师也经常有这样的感慨:软件工程的理解还是要等到进入企业工作才能有真正的收获,书本教学的力量太浅太有限了。

站在有限的教学资源上、从教学效果来说,计科确实占有优势,兼顾了硬件和软件的知识结构,内容更加丰富和博大;而软件面更窄——虽然它才被提升为一级学科——缺乏应有的学术底蕴,同时也缺少一些求知的乐趣。

总结一下上面的观点,给参考的同学一个建议:

如果你缺乏深入探索的学术热情,更期待通过自己完成一个软件来寻求乐趣和信心,那么软件工程会是一个不错的选择。

如果你是一个好奇心很重的孩子,希望能学到更多有趣的知识,计科会更加合适。

图论及其应用的介绍

《图论及其应用》由徐俊明所著,科学技术大学出版社于2010年3月1日正式出版。全书内容共分7章,包括EulGeorg Simmeler回与Hamilton圈,树与图空间,平面网络简化是把一个子网简化成1条分支,简化分支流量修正过程就是子网分流过程。在C++面向对象程序设计上,简化分支由普通分支和流体网络共同派生,并采用虚拟技术“virtual”,该过程将自动实现。图,网络流与连通度,匹配与独立集,染色理论,图与群以及图在矩阵论、组合数学、组合优化、运筹学、线性规划、电子学以及通讯和计算机科学等多方面的应用,每章分为理论和应用两部分。

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 a13828211729@163.com 邮箱删除。